37,855 research outputs found

    A q-analog of the Seidel generation of Genocchi numbers

    Get PDF
    A new qq-analog of Genocchi numbers is introduced through a q-analog of Seidel's triangle associated to Genocchi numbers. It is then shown that these qq-Genocchi numbers have interesting combinatorial interpretations in the classical models for Genocchi numbers such as alternating pistols, alternating permutations, non intersecting lattice paths and skew Young tableaux.Comment: 17 page

    Computational Protein Design Using AND/OR Branch-and-Bound Search

    Full text link
    The computation of the global minimum energy conformation (GMEC) is an important and challenging topic in structure-based computational protein design. In this paper, we propose a new protein design algorithm based on the AND/OR branch-and-bound (AOBB) search, which is a variant of the traditional branch-and-bound search algorithm, to solve this combinatorial optimization problem. By integrating with a powerful heuristic function, AOBB is able to fully exploit the graph structure of the underlying residue interaction network of a backbone template to significantly accelerate the design process. Tests on real protein data show that our new protein design algorithm is able to solve many prob- lems that were previously unsolvable by the traditional exact search algorithms, and for the problems that can be solved with traditional provable algorithms, our new method can provide a large speedup by several orders of magnitude while still guaranteeing to find the global minimum energy conformation (GMEC) solution.Comment: RECOMB 201

    Temporal effects in trend prediction: identifying the most popular nodes in the future

    Full text link
    Prediction is an important problem in different science domains. In this paper, we focus on trend prediction in complex networks, i.e. to identify the most popular nodes in the future. Due to the preferential attachment mechanism in real systems, nodes' recent degree and cumulative degree have been successfully applied to design trend prediction methods. Here we took into account more detailed information about the network evolution and proposed a temporal-based predictor (TBP). The TBP predicts the future trend by the node strength in the weighted network with the link weight equal to its exponential aging. Three data sets with time information are used to test the performance of the new method. We find that TBP have high general accuracy in predicting the future most popular nodes. More importantly, it can identify many potential objects with low popularity in the past but high popularity in the future. The effect of the decay speed in the exponential aging on the results is discussed in detail
    • …
    corecore